INDUSTRIAL SWITCHES

SPECIFIER'S GUIDE FOR

PRESSURE SWITCHES
PRESSURE DIFFERENCE SWITCHES
VACUUM SWITCHES
TEMPERATURE SWITCHES

DS Dual seris

Using the section

This section helps you make a logical choice in selecting the best product for a particular application. It allows a user familiar with our product line to locate the exact page the product is listed on. For those not familiar with our products, a logical sequence is given to help the user pick the best product for their need.

By taking a few minutes to familiarise yourself with the catalogue organisation, you will find it very easy to locate the product/information you need.

1. The contents page lists the broad outline in which the catalogue is organised, and will help the user familiar with products to select the page on which the product or other useful information is listed.
2. Need Product Selection help?

Product selection help will start with the "Pictorial Index" on Page 82 \& 83, where the products are broadly classified. A brief description of each product group, a typical photo of the product within the group and the page number on which it is listed are given.

If the user is not familiar with the products, a product selection guide is provided on pages 88 through 94 , where photos for each product and important specifications are given to help determine and select the best product for the application.

By evaluating and comparing these parameters, a logical selection can be made. Turn to the page on which the product information for the selected product is listed, for:

Capsule Construction details
Physical sizes
Special features
Ranges, hysterisis, electrical ratings etc.
Ordering information
Some applications
The organisation of each of these pages is demonstrated on pages 84 and 85 , of this section "How to use this catalogue".
In many cases, more than one product may work. For the most cost effective solution, compare prices and consider alternatives. Remember, the end cost includes initial product price, plus the installation, plus the service.
3. Need the terminology explained? (see page 330)

Turn to page 330 for the definitions and terminology. This will help you familiarize with the terms used throughout the catalogue.
4. Need information on Accessories? (see page 322)

Turn to page 322 for information on important accessories. These will give information on only important accessories, and information needed, when these are to be supplied with our products.
5. Need selection guidance? (see page 331)

A logical procedure on page 331 will help you to consider most of the important factors when selecting a pressure switch.
6. Need other products? (see page 332)

Products other than those listed in this catalogue are referenced on these pages. Separate catalogues for these products are available.

Pictorial Index

PRESSURE SWITCHES
HIGH RANGE

HIGH PROOF HIGH RANGE

Page No. 108

Page No. 104

Page No. 112

Page No. 116

Page No. 120

HYDRAULIC RANGE*

Page No. 124

HYDRAULIC
DIAPHRAGM RANGE

Page No. 128

DUAL SWITCHES

Page No. 132
PRESSURE DIFFERENCE SWITCHES

Page No. 136

Page No. 140

Page No. 144

Page No. 148

Page No. 154
*Hydraulic ranges are ranges typically from 2 bar to 600 bar, used in oil applications.
However, these switches can be used for other media depending on wetted parts compatibility.

Page No. 158
COMPOUND SWITCHES

HIGH RANGE
HIGH RANGE

Page No. 162

LOW RANGE

LOW RANGE

Page No. 166

TEMPERATURE SWITCHES

Page No. 170
*Hydraulic ranges are ranges typically from 2 bar to 600 bar, used in oil applications.
However, these switches can be used for other media depending on wetted parts compatibility.

HOW TO USE this section

Due to the variety in product types and their salient features, catalogue page formats may vary. But generally the following format is adhered to.

Elements appearing on each page will be:

1. Product family / series - A product family / series will appear on the outside page corner, depending on the left / right hand page, and will be in large bold type.
2. Product section - will appear immediately following the product family / series at top of the page and will be in bold type.
3. Features - will appear next to product description \& will enlist only the major attributes.
4. Pressure capsule details - will show the construction of the pressure capsule and all it's internal parts. If the process / working medium is variable, the wetted parts will be mentioned in italics. If the wetted parts are unique, the material of construction (MOC) will be mentioned
alongside in brackets. Where the material of construction is not specified, it will vary and the options are to be selected by the user considering the compatibility of the process / working medium. Modifications can be made to suit any particular medium, if the answer for your needs is not in the standard MOC listed. Products for which process / working medium is predefined, pressure capsule details are not provided (e.g as in case of comparison test pump). Pressure capsule details of accessories are not given.
5. Installation drawing - will show the typical installation dimensions of products as they exist in their standard forms. The dimensions are mentioned in millimetres and also in inches to facilitate the user. The dimensions of accessories will have to be added to these to arrive at any particular general arrangement (GA) drawings. The dimensions are approximate and for precise dimensions, where mounting space is restricted, the user may contact the nearest sales office. Installation drawings of only fast moving accessories are given.

HOW TO USE this section

6. Photos - will appear on the relevant top of the page for products. If there are mounting variations / styles, all the styles for standard products will appear for easy identification. Options, if included in the photograph, are for demonstration only, and are not a part of the standard equipment. For accessories, the photos are not given due to the sheer variety and range available.
7. Logo - will appear on right hand top of page to identify the manufacturer.
8. Characteristics - Range tables and their relevant data, e.g the range covered, the differentials and maximum working pressures will generally appear on the right hand page. Additional technical details will also be mentioned, wherever required, on the right hand side of the page.
9. Ordering guide - A guide as to how to order the particular series' variations will appear on right hand bottom of the page. Only the variations available within a particular product family / series will appear here. Any additional accessories or modifications required for the product need to be mentioned in text by the user.
10. Some applications - will appear at the bottom left of the page. This is for easy understanding of the specific use of the switch.
11. Installation and operating instructions - This will include the principle of operation and mounting instructions and will appear on the right hand page
12. Numerous combinations are possible when pressure switches are provided with accessories like chemical seals, snubbers, remote seals, pipe mounting brackets, combination of switches mounted in a panel etc. Users are requested to provide the details of accessories required in text / drawings, as separate identification codes are provided for pressure switches fitted and supplied with accessories.

Switch Construction

Switch Construction

The versatile construction of MD switches allows configuration by selecting the following main subassemblies/components :

a) Main body casing :

This is aluminium pressure die cast, and has an IP 66 protection factor. This houses a lever mechanism, as also a scale enhancement mechanism, which is displayed on the page alongside. The cover has captive screws, and the scale, when provided, is clearly visible through a transparent window.
b) The electrical element (s) :

Choice of electrical elements to suit end use are offered, like:

A1: General purpose applications
A2 : Hermetically sealed for corrosive environments
A3 : gold plated contacts for low voltage applications
A4: DPDT configuration
A5 : for high DC ratings
A7: 2SPDT switching elements

The cable entries in this casing can be of the following types: • ½"NPT

- 3/4"NPT
- M20X1.5

Other cable glands to MIL standards can be fitted optionally on request.

It is possible to have more options of electrical elements not published here, to suit individual end use.

The deadband (or hysterisis / on-off differential) of the switches will change with the change of the electrical element (s). The approximate values for each range (for standard microswitches offered) are published in this catalogue
c) The pressure capsule :

To suit the setpoints , the working media and the function of the switch in the application:

High Pressure Ranges (typically from 0.067 barg to 25 barg)	High Proof High Pressure Ranges (typically from 0.067 barg to 25 barg, Pmax = 70 bar) \square	Low Pressure Ranges (typically from 1.5 mbarg to 350 mbarg)	High Range Pressure Difference Switches (typically from 0.1 barg to 25 barg) \square
High Proof High Range PD Switches (typically from 0.1 barg to 25 barg, $\mathrm{Pmax}=200$ bar)	Low Range Pressure* Difference Switches (typically from 1.5 mbarg to 350 mbarg)	Vacuum Switches (typically from 760 mm Hg to atmospheric pressure)	Hydraulic Pressure Ranges (typically from 0.5 barg to 400 barg)

*The pressure capsule can be modified to take high proof pressures [typically 100 bar for high and low pressure switches, or pressure difference switches (from high pressure side)].

Several accessories like chemical seals, pipe mounting brackets etc can be supplied with these switches to suit the media to be sensed. All of these are not listed, though most popular ones can be found on pages 322 through 328.

Please do get in touch with us for any of your applications, not addressed in this catalogue. We would be glad to offer you a solution.

Product Selection Guide

		Page No. 96	Page No. 100	Page No. 104
	Switch type	High Pressure Ranges	High Proof High Pressure Ranges	High Range Bellows
	Repeatability (\% FSR)	± 1	± 2	± 2
	Range covered	0.067 bar to 25 bar	0.067 bar to 25 bar	0.1 bar to 25 bar
	Enclosure Protection	IP 66		
	Enclosure Material	Pressure die-cast aluminium		
W	Sensing element Standard Optional	Diaphragm Nylon reinforced neoprene diaphragm protected by Teflon Teflon, SS316L, Hastelloy C, Monel SS 316L / Teflon		Bellows SS 316
$\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \\ & \mathrm{E} \\ & \mathrm{~T} \end{aligned}$	Pressure housing Standard Optional	$\text { SS } 316$ Hastelloy C, Monel		SS 316
P	Other Wetted Parts	SS316, Teflon		
$\begin{aligned} & \mathrm{A} \\ & \mathrm{R} \\ & \mathrm{~T} \\ & \mathrm{~S} \end{aligned}$	Optional wetted parts through chem. seal	SS316, Hastelloy, Inconel Alloy, Monel, Nickel, Platinum, Tantalum, Titanium, Zirconium, Silver, PTFE		
	Temp. of working medium	For non-metallic diaphragm: $80^{\circ} \mathrm{C}$ maximum. For metallic diaphragm: $150^{\circ} \mathrm{C}$ maximum For higher temperature, please use impulse tubing/chemical seals.		
	Switching element	SPDT Snap action switch A1 : General purpose rated at 15A, 250 VAC, 0.2 A, 250 VDC resistive. For other switching elements please contact sales office.		

Accessories can be supplied with most of the switches. Please consult sales office.

Product Selection Guide

Page No. 108

Large Bore High Range
± 2
0.1 bar to 25 bar

Page No. 112

Air Relay
± 2
0.067 bar to 25 bar

IP66

Pressure die-cast aluminium

Diaphragm Nylon reinforced neoprene diaphragm protected by Teflon SS316L, Teflon, Monel	Diaphragm Nylon reinforced neoprene diaphragm protected by Teflon Teflon, SS316L	Diaphragm Nylon reinforced neoprene diaphragm protected by Teflon SS316L, Hastelloy C, Titanium, Monel, Tantalum
SS316 Monel	SS 316	Flange SS316L Hastelloy C, Titanium, Monel, Tantalum
Teflon, SS316		Teflon

For non-metallic diaphragm: $80^{\circ} \mathrm{C}$ maximum.
For metallic diaphragm: $150^{\circ} \mathrm{C}$ maximum
For higher temperature, please use impulse tubing/chemical seals.
SPDT Snap action switch A1 : General purpose rated at 15A, 250 VAC, 0.2 A, 250 VDC resistive.
For other switching elements please contact sales office.

Page No. 116

Flanged
± 2
0.1 bar to 200 bar

Product Selection Guide

	Switch type
	Repeatability (\% FSR)
	Range covered
	Enclosure
	Protection
	Enclosure
	Sensing element
W	Standard
E	Optional
T	Pressure housing
T	Standard
D	Optional
P	Other Wetted Parts
A	Optional wetted
R	parts through
chem. seal	
S	

Temp. of working medium

Switching element

Page No. 120

Page No. 124

Low Pressure Ranges
± 2
1.5 mbar to 350 mbar

Page No. 128

Hydraulic Diaphragm
± 2
0.5 bar to 400 bar

IP 66

Pressure die-cast aluminium

For non-metallic diaphragm: $80^{\circ} \mathrm{C}$ maximum.
For metallic diaphragm: $150^{\circ} \mathrm{C}$ maximum
For higher temperature, please use impulse tubing/chemical seals.
SPDT Snap action switch A1 : General purpose rated at 15A, 250 VAC, 0.2 A, 250 VDC resistive. For other switching elements please contact sales office.

Accessories can be supplied with most of the switches. Please consult sales office.

* Higher ranges available on request

Product Selection Guide

Page No. 132

Dual High Range
± 2
0.067 bar to 200 bar

Page No. 136

High Range Pressure Difference Switches
± 1
0.1 bar to 3.6 bar*

IP 66
Pressure die-cast aluminium

Diaphragm
Nylon reinforced neoprene
Teflon, SS316L

SS 316	Aluminium SS 316, Hastelloy C, Monel			
	Teflon, SS316 Teflon Hastelloy C, Monel			

For non-metallic diaphragm: $80^{\circ} \mathrm{C}$ maximum.
For metallic diaphragm: $150^{\circ} \mathrm{C}$ maximum
For higher temperature, please use impulse tubing/chemical seals.
SPDT Snap action switch A8 : General purpose rated at 5A, 250 VAC,

SPDT Snap action switch A1 : General purpose rated at 15A, 250 VAC, $0.2 \mathrm{~A}, 250 \mathrm{VDC}$ resistive.
For other switching elements please contact sales office.

Switch type

Product Selection Guide

Page No. 144

Switch type
Repeatability (\% FSR)
Range covered
Enclosure Protection
Enclosure Material
Sensing element Standard Optional
Pressure housing Standard Optional
Other Wetted Parts
Optional wetted parts through chem. seal
Temp. of working medium
Switching element

High Range DP
± 1
0.1 bar to 25 bar

Page No. 148

Ultra Low Range
± 1
20 Pa to 4000 Pa

Page No. 150

Low Range Pressure Difference Switches
± 2
1.5 mbar to 350 mbar

IP 66

For non-metallic diaphragm: $80^{\circ} \mathrm{C}$ maximum.
For metallic diaphragm: $150^{\circ} \mathrm{C}$ maximum
For higher temperature, please use impulse tubing/chemical seals.

SPDT Snap action switch A1 General purpose rated at $15 \mathrm{~A}, 250 \mathrm{VAC}$ $0.2 \mathrm{~A}, 255 \mathrm{VDC}$ resistive. For other switching elements please contact sales office	Maximum 1 A(0.4A)/250VAC	SPDT Snap action switch A1 General purpose rated at $15 \mathrm{~A}, 250 \mathrm{VAC}$ $0.2 \mathrm{~A}, 25 \mathrm{VDC}$ resistive. For other switching elements please contact sales office.

SPDT Snap action switch A1: General purpose rated at $15 A, 250 \mathrm{VAC}$, $0.2 \mathrm{~A}, 250 \mathrm{VDC}$ resisitive. For other switching elements please contact sades office.

Accessories can be supplied with most of the switches. Please consult sales office.

* Higher ranges available on request

Product Selection Guide

Page No. 154

Low $\Delta \mathrm{P}$ High Proof Pressure Difference Switches
± 2
5 mbar to 350 mbar

Page No. 162

High Range Compound Switches
± 2
-1 bar to 3.6 bar

Switch type

Standard

Switch type

For non-metallic diaphragm: $80^{\circ} \mathrm{C}$ maximum.
For metallic diaphragm: $150^{\circ} \mathrm{C}$ maximum
For higher temperature, please use impulse tubing/chemical seals.
SPDT Snap action switch A1 : General purpose rated at 15A, 250 VAC, 0.2 A, 250 VDC resistive.
For other switching elements please contact sales office.

Product Selection Guide

Page No. 166

Switch type		Low Range Compound Switches	Temperature Switches
	Repeatability (\% FSR)	± 2	± 1
	Range covered	-150 mm wc to 250 mm wc	$\begin{gathered} 25^{\circ} \mathrm{C} \\ \text { to } 215^{\circ} \mathrm{C} \end{gathered}$
	Enclosure Protection	IP 66	
	Enclosure Material	Pressure die-cast aluminium	
$\begin{gathered} W \\ E \\ T \\ T \\ E \\ D \\ \\ \hline \text { P } \\ \text { A } \\ R \\ T \\ \hline \end{gathered}$	Sensing element Standard	Diaphragm Nylon reinforced neoprene diaphragm protected by Teflon	Bulb/Probe Brass
	Optional	Teflon	
	Pressure housing Standard Optional	SS 316	
	Other Wetted Parts	SS, Nitrile, AI., M.S.	
	Optional wetted parts through chem. seal		
	Temp. of working medium	For non-metallic diaphragm: $80^{\circ} \mathrm{C}$ maximum. For metallic diaphragm: $150^{\circ} \mathrm{C}$ maximum For higher temperature, please use impulse tubing/chemical seals.	
	Switching element	SPDT Snap action switch A1: General purpose rated at 15A, 250 VAC, 0.2 A, 250 VDC resistive. For other switching elements please contact sales office.	

Accessories can be supplied with most of the switches. Please consult sales office.

* Higher ranges available on request

DS DUAL HIGH RANGE PRESSURE SWITCHES

Approximate Weight : 3.5 Kg .
Some Applications : Used when two independent set points are required for $\mathrm{HI}-\mathrm{HI}, \mathrm{LO}-\mathrm{LO}$ or HI-LO applications, typically alarm and trip functions.

Electrical Connection :

PRESSURE CAPSULE DETAILS

No. Description

1. Pressure Port
2. Plunger
3. Housing Plate
4. Diaphragm
5. O-Ring
6. Backup Ring

Note : wetted parts are mentioned in italics.

INSTALLATION DRAWING

DS DUAL HIGH RANGE PRESSURE SWITCHES

RANGE SELECTION TABLE

Range Code	Range bar (psi)	Differential* bar (psi)	Maximum Working Pressure bar (psi)
		Approximate Maximum for "A8" microswitch	
$L P^{\dagger}$	$\begin{gathered} 0.067-0.213 \\ (0.97-3.09) \end{gathered}$	$\begin{gathered} 0.05 \\ (0.72) \end{gathered}$	$\begin{gathered} 5 \\ (72.52) \end{gathered}$
LP5	$\begin{gathered} 0.1-0.5 \\ (1.45-7.25) \end{gathered}$	$\begin{gathered} 0.10 \\ (1.45) \end{gathered}$	$\begin{gathered} 5 \\ (72.52) \end{gathered}$
H01	$\begin{gathered} 0.1-1.0 \\ (1.45-14.50) \end{gathered}$	$\begin{gathered} 0.10 \\ (1.45) \end{gathered}$	$\begin{gathered} 12 \\ (174.05) \end{gathered}$
H02	$\begin{gathered} 0.1-1.5 \\ (1.45-21.76) \end{gathered}$	$\begin{gathered} 0.20 \\ (2.90) \end{gathered}$	$\begin{gathered} 12 \\ (174.05) \end{gathered}$
H03	$\begin{gathered} 0.2-2.6 \\ (2.90-37.71) \end{gathered}$	$\begin{gathered} 0.20 \\ (2.90) \end{gathered}$	$\begin{gathered} 12 \\ (174.05) \end{gathered}$
H04	$\begin{gathered} 0.2-3.6 \\ (2.90-52.21) \end{gathered}$	$\begin{gathered} 0.20 \\ (2.90) \end{gathered}$	$\begin{gathered} 12 \\ (174.05) \end{gathered}$
H07	$\begin{gathered} 0.5-7.0 \\ (7.25-101.50) \end{gathered}$	$\begin{gathered} 0.40 \\ (5.80) \end{gathered}$	$\begin{gathered} 12 \\ (174.05) \end{gathered}$
H10	$\begin{gathered} 0.5-10.0 \\ (7.25-145.04) \end{gathered}$	$\begin{gathered} 0.60 \\ (8.70) \end{gathered}$	$\begin{gathered} 25 \\ (362.6) \end{gathered}$
H15	$\begin{gathered} 1.0-15.0 \\ (14.50-217.56) \end{gathered}$	$\begin{gathered} 0.60 \\ (8.70) \end{gathered}$	$\begin{gathered} 25 \\ (362.6) \end{gathered}$
H30	$\begin{gathered} 5.0-25.0 \\ (72.52-362.6) \end{gathered}$	$\begin{gathered} 0.80 \\ (11.60) \end{gathered}$	$\begin{gathered} 35 \\ (507.63) \end{gathered}$
H4T	$\begin{gathered} 5.0-40.0 \\ (72.52-580.15) \end{gathered}$	$\begin{gathered} 5 \\ (72.52) \end{gathered}$	$\begin{gathered} 200 \\ (2900.76) \end{gathered}$
H 1 H	$\begin{gathered} 10.0-100.0 \\ (146.04-1450.38) \end{gathered}$	$\begin{gathered} 12 \\ (174.05) \end{gathered}$	$\begin{gathered} 200 \\ (2900.76) \end{gathered}$
H 2 H	$\begin{gathered} 7.0-200.0 \\ (101.52-2900.76) \end{gathered}$	$\begin{gathered} 24 \\ (348.09) \end{gathered}$	$\begin{gathered} 400 \\ (5801.88) \end{gathered}$

*Minimum differential increases with setpoint (Graphs available on request), results for neoprene diaphragm. \dagger Range not available in SS316 L diaphragm.
HOW TO ORDER INDUSTRIAL DUAL HIGH RANGE PRESSURE SWITCHES

Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7	Group 8
Non standard allocation	Model	Cable Entry Size	Switch Type	Range Code (values in bar)	Microswitch Type	Pressure Port Material / Size	Diaphragm
\square Reserved for non-standard options not covered in catalogue. Will be given by manufacturer, only after agreement of supply details with customer.	DS = Dual pressure switch with cast aluminium enclosure to IP66 as per IS2147	$1=$ $1 / 2$ " NPT threads $2=$ $3 / 4$ " NPT threads 3 = M20 X 1.5 threads	PF2 = pressure switch, fixed differential with scale in bar PF3 = pressure switch, fixed differential with scale in psi *PA2 = pressure switch, adjustable differential with scale in bar *PA3 = pressure switch, adjustable differential with scale in psi *Available with A9 (in group 6) only	$\begin{aligned} & \text { LP }=(0.067-0.213) \\ & \text { LP5 }=(0.1-0.5) \\ & \text { H01 }=(0.1-1.0) \\ & H 02=(0.1-1.5) \\ & H 03=(0.2-2.6) \\ & H 04=(0.2-3.6) \\ & H 07=(0.5-7.0) \\ & H 10=(0.5-10.0) \\ & H 15=(1.0-15.0) \\ & H 30=(5.0-25.0) \\ & H 4 T=(5.0-40.0) \\ & H 1 H=(10.0-100.0) \\ & H 2 H=(7.0-200.0) \end{aligned}$	A8 = General purpose microswitch rated at 5 A; 250 VAC A7 = 2SPDT microswitches A9 = General purpose microswitch rated @ 5A, 250 VAC	S1 = SS316 / 1 1 4" BSP(F) S2 = SS316 / 1 1/4" NPT(F) Please refer page no 226 \& 227 for more pressure port options	$0=$ Neoprene 1 = Teflon 2 = SS 316L

Group 5

ACCESSORIES

Following accessories can be provided with pressure switches to make it suitable for any particular application.

Flameproof enclosures

Chemical seals (or diaphragm seals)
adaptors to suit customer's process connection switch savers
impulse tubes
syphons
manifolds
pipe mounting brackets
mounting plates to suit other makes on the market
snubbers
tag plates (to display tag no. and identify the instrument)

Installation drawings of most common and fast moving accessories are given. The wetted parts, wherever applicable, are not specified due to the extreme variety available.

MOUNTING PLATE

A. Mounting holes for MN / MA models
B. Mounting holes for MG / ME models
C. Three no.s holes on 90×48 (mm)
D. Two no.s holes on 91×69 (mm)
E. Two no.s holes on 104×98 (mm)
F. Two no.s holes on 83×100 (mm)

Note : Mounting screws, washers and spacers will be provided with this plate.

ACCESSORIES

Gauge Saver

A OPP $1=$ Set Pressure: 0.6 to 2.0 bar A OPP 2 = Set Pressure: 2.5 to 200 bar

2 Valve Manifold

Snubber

ACCESSORIES

CHEMICAL SEALS (DIAPHRAGM SEALS):

General description:
Diaphragm seals are partitions used with pressure switches which prevent the measured medium from entering the pressure capsule of the pressure switch. Diaphragm seals solve many problems encountered in sensing, which are otherwise impossible to solve with only pressure switches. Some of the examples are:

- protection of pressure switch from aggressive, highly viscous solidifying or crystallizing measured media
- protection from high measured medium temperatures or fluctuations in temperature
- protection from vibrations by coupling via capillaries
- dead zone free sensing arrangements for particular hygienic applications
- use of special materials or surface coatings of the wetted parts for special applications.

CAUTION: Pressure switch and diaphragm seal are always a closed system and should not be separated by unauthorised persons.

When the pressure switch is to be kept away from undesirable temperatures or vibrations, a capillary can be used to connect the pressure switch and the diaphragm seal. Capillaries also have a throttling effect which is often desirable in pulsating process pressures. During setpoint adjustment, the weight of the liquid column between the diaphragm seal and the pressure switch needs to be taken into consideration, if they are mounted at different elevations.

Depending on the application, a variety of media with different properties are used as transmission liquids. For most of the general applications, silicon oil can be used. For food industries, a transmission liquid compatible with the process needs to be used.

A variety of chemical seals can be supplied with pressure switches and only the most commonly used arrangements/assemblies are shown here.

In most of the cases, the common wetted parts and diaphragms are of SS316. Alternate wetted materials that can be provided are:

- HASTELLOYB2
- HASTELLOYC4
- HASTELLOY C22
- HASTELLOYC276
- MONELALLOY 400
- MONELALLOYK500
- TITANIUM
- NICKEL
- ZIRCONIUM
- INCONEL ALLOY 600
- PLATINUM - PTFE
- TANTALUM

The on - off differentials of pressure switches fitted with chemical seals are likely to be higher than those mentioned in the catalogue. There is also a possibility of time lag (for sensing) being introduced, depending on the length of the tubing between the pressure switch and the seal.

While ordering, customer's are requested to specify all the process parameters including ambient conditions, operating conditions, the process to be sensed and response times allowable, temperature of the seal under sensing conditions and temperature outside the measuring / sensing sequences (e.g as in rinsing sequences) so that a proper sealing system can be suggested.

ACCESSORIES

STANDARD CHEMICAL SEAL SUITABLE FOR THREADED CONNECTION : (Type A)

CHEMICAL SEAL SUITABLE FOR VARIABLE FLANGED CONNECTION : (Type B)

ACCESSORIES

FLUSH TYPE CHEMICAL SEAL (Type C)
Flush connection

FULL WELDED CHEMICAL SEAL (Type D)

GENERAL SPECIFICATIONS AND APPLICATION NOTES

1. All the pressure switches contained in this catalogue are gauge pressure switches.
2. Pressure switches are switching instruments and not measuring ones. As such, the word "calibration" is used for the markings made on the scale to indicate the approximate setpoint of the pressure switch. No "calibration certificate" for this indication can be given in the proper sense of the word. However, the pressure switches can be supplied preset at user specified setpoints, provided the setpoints are indicated during the ordering stage itself.
3. Process temperature : can be 80 deg. C maximum. A pressure switch being a dead end, is not subjected to continuous process temperature(as in case of flow). As such, a proper length of impulse tubing of proper material (or chemical seals with adequate tubing) will substantially bring down the temperature, well within the specified limits. Normal pressure switches (without any modifications) have been used with working media having a temperature of upto 350 deg. C, only by employing an additional impulse tube.
4. Ambient temperature: can be from -10 deg. C to 60 deg. C for most of the standard pressure switches. Care should be taken that no icing occurs inside the enclosure where the atmospheres are humid, when pressure switches are used in subzero ambient temperature areas. Pressure switches for use in wider ambient temperatures can be developed should your application fall in such areas. If the process is likely to freeze / crystallize / solidify within this ambient range, chemical seals should be used alongwith the pressure switches.
5. All the pressure switches are tested on kerosene / air prior to despatch. For applications involving food grade material / oxygen service or processes not compatible with kerosene, such a note should be specifically made while ordering, so that pressure switches are tested accordingly.
6. All data published is under standard test conditions. Following conditions generally apply for Laboratory Evaluation tests:

Temperature	$:$	Ambient room temperature $\left(21^{\circ} \mathrm{C}\right)$
Humidity	$:$	Ambient (50%)
Proof pressure	$:$	1.5 times maximum working pressure
Cycling rate	$:$	30 cycles/minute
Pressure rise	$:$	compatible with above cycling rate (maximum)
Life in no. of cycles	$:$	100,000 minimum

The life and characteristics of pressure switches can be affected by temperature, humidity, airborne contamination, vibration and frequency of operation of the pressure switches. For specific switch selection, customers are requested to evaluate switch performance under actual application conditions or by simulating all the extreme application conditions and requirements. Laboratory Evaluation test data can never substitute customer's own product evaluation.
The life of the pressure switches can be increased by incorporating changes in design or by substituting certain components. Customers are requested to contact our sales office for any such specific requirements.

DEFINITIONS \& TERMINOLOGY FOR PRESSURE ACTUATED SWITCHES

Pressure Switch:- A pressure switch is an instrument that automatically senses a change in pressure and opens or closes an electrical switching element when a pre-determined pressure point is reached.

Pressure sensing element:-A pressure sensing element is the portion of the pressure switch that transmits motion due to change in pressure.

Electrical switching element:- The electrical switching element in a pressure switch opens or closes an electrical circuit in response to the actuating force it receives from the pressure sensing element. Orion pressure switches are fitted with single pole double throw (SPDT) snap action switch(es) as electrical switching element (s) for maximum reliability.
Normally open switching element:- No current can flow through the switching element until the switch is actuated.
Normally closed switching element:- Current flows through the switching element until the switch is actuated.
Set Point:- The set point is expressed in terms of exact pressure at which the snap-action switch is actuated to either open or close the electrical circuit (depending on how the switch is wired).

Differential (Dead band, Hysterisis):- Differential is the difference between the actuation point and the deactuation point, e.g. if a pressure switch is set to operate at 5 bar on increasing pressure, the switch will close when the pressure rises to that point. As the pressure drops to, say, 4.8 bar the switch may open (this is the deactuation point). The differential of this switch is then 0.2 bar, the difference between the set point of 5 bar and deactuation point of 4.8 bar. Differential is sometimes referred to as "deadband" or "hysterisis".

Set Point in relation to increasing pressure \& decreasing pressure:- A pressure switch may be set to actuate at any desired point on rising pressure or falling pressure. The former is described as "set to actuate on increasing (or rising) pressure" \& the latter as "set to actuate on decreasing (or falling) pressure". The preferred actuation must be specified clearly on orders for pressure switches that are to be factory set.

Range :- The span within which the set point of a pressure-actuated switch may be adjusted.
Proof Pressure :- Proof pressure is the highest pressure to which a switch may be subjected without permanent damage.
Maximum working pressure (MWP) :-The nominal pressure level that a system will operate at, including workload.
Differential pressure :- The difference between a reference pressure and a variable pressure.
Wetted parts :-The parts which come in contact with the working medium.

HOW TO SELECT A PRESSURE SWITCH FOR YOUR APPLICATION

Following are the general guidelines which should help you arrive at a proper selection of a pressure switch for your application.

Step1.

Service life of the switch. Expected service life is the first consideration to be made in selecting a pressure switch, regardless of sensitivity or pressure desired. A second consideration in choosing a pressure switch is the speed of cycling, regardless of the service life. A sensing element made of metal sheets is likely to fatigue at cycling speeds above 20 cycles per minute and is not recommended for service life of more than 1 million cycles. Orion and Parus pressure switches use nylon reinforced rubber or piston as a sensing element and have been tested at a cycling frequency of 30 cycles / minute for more than a million cycles. The working medium to be controlled must be considered and to simplify selection, wetted parts are indicated on the catalogue pages.

Step 2.

Proof pressure - Choice of type of pressure switch must also be governed by the highest pressure to which it will ever be subjected. The highest pressure in the system including surges, should not be more than the proof pressure of the switch. It must be remembered that, though there are surges in the system, a pressure gauge may register a constant reading, the surges being dampened out by the orifice in the gauge.

Step 3.

Function of the switch. Three types of Orion pressure switches, based on function, are described below, a) Single setting pressure switches : They sense a single pressure source and open or close a single electrical circuit by means of a snap action electrical switch. b) Pressure difference switches: They sense a change in relationship between two pressures and open or close a single electrical circuit by means of a snap action electrical switch. c) Adjustable differential pressure switches: They sense two pressure limits, within a desired adjustable range, from a single pressure source and open or close a single electrical circuit by means of a snap action electrical switch.

Step 4.

Selection of adjustable range. The range should be selected such that the setpoint lies as close as possible to the middle of the total adjustable range. This will ensure the most favourable combination of accuracy and life.

Step 5.

Working medium. The working medium should be compatible with the wetted parts. For easier selection, the wetted parts are given in the catalogue pages. The maximum temperature of the working medium is also important. A pressure switch, being a dead end, is not subjected to continuous temperature. If the temperature of the working medium exceeds 80 deg. C, an impulse tubing of appropriate length should be used between the process connection and pressure port of the switch. Where the working medium is likely to freeze at the sensing element, a diaphragm seal (chemical seal) with appropriate wetted parts should be used. In case of excessive temperature or mounting the pressure switch remotely, pressure switches can also be supplied with remote seals. The filling medium has to be compatible with the working medium, and needs to be specified while ordering. (Specially in case of food related industries / processes)

Step 6.

Environment. The environment in which the pressure switch will operate is very important. Orion pressure switches can be supplied in weatherproof enclosures for outdoor service. For use of pressure switches in hazardous areas Orion pressure switches can be supplied in flameproof enclosures.

